
Scalable parallel seismic processing
CHARLES C. MOSHER and CALVIN L. JOYNER
ARCO Exploration and Production Technology

Plano, Texas

Seismic methods, the primary tool in the search for oil and
gas, are used to produce images of the earth’s subsurface that
explorationists can analyze for geologic structures with hy-
drocarbon potential.

Two distinguishing attributes of seismic processing are
size of the data and the computational complexity. A typical
3-D seismic survey can yield terabytes (more than a million

Figure 1. Seismic pro-
cessing is structured to
flow data through software
modules. 2-D arrays of
data are read from disk,
and then software modules
are called to process the
data. A final module writes

the processed
data back to
disk. Loops are
used to create
more complex
flows.

Figure 2. Parallel decomposition models for seismic
processing.

SIAMAK HASSANZADEH
Sun Microsystems

Mountain View, California

floppy disks) of data with computation requirements that ex-
ceed 1018 floating point operations. A high end personal com-
puter would require hundreds of years to deliver that many
computations. As might be imagined, the processing of such
seismic data sets places a great demand on the petroleum in-
dustry’s high performance computing capacity.

Seismic data processing, however, is ideally suited for par-
allel computations. Several of the processing tasks are trivial
to parallelize. These generally need to access a block of the
data, process it in-place, and write it back to the secondary
storage devices. There is no interprocessor communication
during the execution of these tasks. On the other hand, a sig-
nificant percentage needs to be restructured for parallel com-
putation. This can be simplified by adopting a uniform
parallel computing strategy that addresses parallelism for all
parts of the processing data flow. With this approach, signif-
icant increases in processing speed can be accomplished on
nearly any available commercial parallel computing plat-
form.

The design and implementation of scalable parallel seis-
mic data processing are illustrated by the ARCO Seismic
Benchmark Suite (SBS), a public domain software system
that provides an environment for development and perfor-
mance analysis of parallel processing algorithms. Recently,
the ARCO suite was included in the Systems Performance
Evaluation Corporation’s high performance computing
benchmark suite (SPECseis96).

The following sections describe some common parallel
programming models used in seismic processing and illus-
trate the use of the models with examples from SBS.

Types of parallelism. A conventional seismic processing
sequence operates as a pipeline (Figure 1). A block (record or
records) of seismic data is read, one at a time, from secondary
storage devices and is then passed through a chain of data
processing routines. A final step writes the processed data
back to secondary storage devices. Loops are used to create
more complex flows. There are several ways to parallelize
this processing sequence.

One common approach is the master/slave model, where
one processor collects data for all other processors and as-
signs tasks to the slave processors as well. In this approach,
the host or master controls the sequence of operations on the
slaves, with all data transfers and interprocessor communica-
tions handled by the master. Another commonly used ap-
proach is the fan-in/fan-out method whereby parallel tasks
are spawned by a single processor to other processors. Syn-
chronizations and data transfers are handled by the control
processor, as illustrated in Figure 2.

These two approaches, often referred to as examples of
control parallelism, both introduce I/O bottlenecks that can
limit scalability to a handful of processors, although the un-
derlying model is very simple and puts few demands on the
programmer. This approach is also limited to those cases
where little or no communications is required between
processors.

DECEMBER 1996 THE LEADING EDGE 1363

Figure 3. Domain de-
composition for finite
difference calculations.
The finite difference
grid is distributed
across the processors. At
the edges, data must be
exchanged to complete
the difference calcula-
tions.

Figure 4. Transpose paral-
lelism for a 2-D Fourier
transform. Initially, the x di-
mension is spread across the
processors, so that a block of
traces is owned by each
processor. The first FFT in
the time direction is com-
puted in parallel “sing sim-
ple parallel ism (owner
computes). A distributed
transpose is then used to
change the parallel dimen-
sion, so that frequency is
spread across the proces-
sors. The second FFT is then
computed in parallel.

Figure 5. Distributed
memory transpose rou-
tines are used to change
the state of the parallel
decomposition. A tiled
algorithm is used (where
processors exchange
tiles of data) followed by Figure 6. Initial parallel de-
a local transpose of each composition of input 3-D seis-
tile to complete the oper- mic data. The y dimension is
ation. The fill patterns spread across the processors,
indicate which tiles are and each node manages a
exchanged. “slab” of t-x slices.

Seismic data, which can have as many as five dimensions
in prestack form (two source coordinates, two receiver coor-
dinates, and one time coordinate) offers many opportunities
for data parallelism. In this model, parallelism is described in
terms of the number of independent (or nearly independent)
pieces that the data can be divided into. Most data parallel
computations fall into three categories which we refer to us
simple, domain, and transform parallelism.

As you might expect, transform parallelism provides a
convenient framework for implementing multidimensional
transforms. An example if the 2-D Fourier transform. Con-
sider a 2-D array of seismic traces (Figure 4). Initially, the
space dimension has been spread across the processors so that
each owns a block of traces. We refer to the space dimension
as the parallel dimension in this case. The first transform over
time is computed with simple parallelism, where each proces-
sor calls an FFT routine for each of the traces it owns. The
second transform over space requires transposition of the
data, so that frequency rather than space is the parallel di-
mension. On shared memory parallel computers, the trans-
pose could be conducted by allowing one of the processors to
transpose the data using conventional techniques. However,
any time you see the term “one of the processors” in the de-
scription of a parallel algorithm, you can be sure that scala-
bility will be limited. For parallel computers with distributed
memories, efficiency of the transpose becomes even more
critical. Clearly, a parallel transpose algorithm is called for.

Simple (embarrassingly) parallel behavior is characterized
by completely independent operations that can be applied to

Fortunately, efficient parallel transpose routines for both
shared and distributed memory architecture are readily avail-

different blocks of data. For example, if the entire data set
needs to be filtered, each processor can filter a group of truces
(i.e., a shot or CMP gather) independently with no commu-
nication between processors. This model of computation is
also referred to as “owner computes”, since each processor
performs computations only on the data stored on that proces-
sor. If parallel I/O is also available, data can be read and writ-
ten by all processors at once, us illustrated in Figure 2. Given
I/O resources that scale with compututional resources, great
speedup can be achieved using this model.

Domain parallelism, also referred to as domain decompo-
sition, assigns subblocks or domains of the data to different
processors in the parallel machine. Domain parallelism is dif-
ferentiated from simple parallelism by the need for commu-
nication of information between subdomains. The most
common example occurs with finite difference calculutions.
where the finite difference grid is divided across the proces-
sors in a parallel computer (Figure 3). In the interior of each
domain, the computations are independent, and can proceed
in parallel. At the boundaries between domains, however.
data from more than one block are needed for the finite dif-
ference computations. This requires moving data from one
processor to another, either through shared memory that both
processors can access, or by sending a message over a com-
munication link. If either is busy, the processors must wait
for the resource. Thus, communications can be a limiting fac-
tor for scalability of programs that use domain parallelism.
These programs are often characterized by the ratio of “con-
pure-to-communicate“ time in the algorithm. The higher the
ratio, the more scalable the program is likely to be.

The most extensive form of parallelism used in seismic
data processing is transform parallelism. This could be eu-
phemistically referred to as “The search for the parallel di-
mcnsion.” With multidimensional seismic data, there are
many possible parallel dimensions over which computations
could be distributed. In many cases, the “best” parallel di-
mension might change for different parts of the algorithm. In
transform parallelism, the data are arranged to provide distri-
butions across processors that match what is required by the
computing algorithm. If the data do not initially match the re-
quired distribution, or if the required distribution changes, the
data are redistributed across the processors using sorting and
transpose routines.

able. An example that uses tiling is illustrated in Figure 5.
The strip of data on each processor is subdivided into tiles, so
that the number of tiles on each processor is equal to the total
number of processors. The transpose occurs in two stages.
First, processors exchange tiles across the diagonal. After the
tile exchange, each individual tile is transposed locally to
complete the operation. Both stages operate in parallel. After
the transpose, the final FFT in the space direction can be com-
puted using simple parallelism.

Transform parallelism to arrange the data, combined with
simple “owner computes” parallel computation, provides an
effective approach for scalable parallel implementation of a
wide range of seismic processing algorithms.

The ARCO Seismic Benchmark Suite. SBS was designed
to provide portable, parallel seismic processing algorithms
for analyzing the performance of computing systems. The
suite contains algorithms that are representative of a produc-
tion software system and is based on a processing model sim-
ilar to that used in many modern seismic processing
environments. Information about SBS is available via the
SEG Internet site for the Computing Applications Subcom-
mittee.

SBS consists of three major parts:

1) Seismic executive which manages the processing flow,
memory and timing.

2) Application routines which represent various operations
that are customarily applied to seismic data.

3) Utility routines which provide for data input/output, basic
mathematical operations, message passing for distributed
memory systems, and examination of the results.

Nearly all source codes in the current version are written
in FORTRAN 77. The directory structure, makefiles, and vi-
sualization tools are based on UNIX and X Windows, and a
loosely enforced object oriented programming style is used
for most applications. Future work will focus on using a
stricter object oriented framework.

Rather than deal with the issues of floating point format
conversions for seismic data, SBS generates data in the native
format of the target machine. Moreover, the benchmark suite
allows for various combinations of processing flows and data
sizes to provide meaningful measurements and metrics on a
variety of high performance computing platforms.

SBS makes extensive use of transform parallelism to en-
hance scalability. Seismic data is presented to geophysical al-
gorithms as parallel distributed arrays. High level parallel
algorithms for I/O, data distribution, and transposes isolate
the application programs from the details of the underlying
parallel computer architecture. Rather than dealing with
shared memory, semaphores, message passing, or other low
level parallel constructs, the application codes in SBS use
high level data distribution and transpose routines to arrange
the data in a way that matches the requirements of the pro-
cessing algorithm. This approach has several benefits for
portability, scalability, and maintenance. Portability is en-
hanced, since changes for particular architectures can be iso-
lated to a few low level routines. Scalability is improved by
allowing multiple levels of parallelism to be exploited by an
algorithm. Finally, maintenance and readability of codes is
improved, since the application now deals with geophysical
operations such as Fourier transforms, filtering, phase shifts,

Figure 7. Parallel data
reduction scheme for
summing frequency
slabs across proces-
sors. The x-y planes
are first summed lo-
cally. A global trans-
pose allows the final
sum to also be per-
formed in parallel. The
final image plane is
distributed across
processors in the y di-
rection.

Figure 8. (below) Full
data f low for the
parallel 3-D migration
algorithm.

and wavefield extrapolation, rather than the details of mes-
sage passing or shared memory synchronization.

An example. We describe one of the SBS algorithms, 3-D
poststack depth migration, as an example of a complete ap-
plication.

The algorithm used in SBS is based on an implicit finite
difference approach described by Zhiming Li (GEOPHYSICS,
1991). The algorithm begins with a 3-D seismic wavefield in
time and space P(t,x,y,z = 0) that was recorded on the surface
of the earth. The data are Fourier transformed to the tempo-
ral frequency domain P(f,x,y,z = 0). An equivalent wavefield
one depth step deeper into the earth P(f,x,y,z = zl) is obtained

DECEMBER 1996 THE LEADING EDGE 1365

from an implicit solution of a finite difference approximation
to the scalar wave equation:

dP icC, Ccs pm-p-------------
dz V~&Y92) (l+ps)

where P is the seismic wavefield, CC) is the angular fre-
quency, v c~,y,z) is the propagation velocity, a and-p are ex-
pansion coefficients, and

v2(x,y,z) dZ d2s=-
w2 L 1

ax’+&2 l

The solution of these equations is referred to as “down-
ward continuation.” Given the downward continued wave-
field P(f,x,y,z = zl), and image of the earth I(x,y,z = zl) is
obtained by extracting the zero time (x,y) plane from P(f,x,y,z
= zl), which is the sum of all frequencies. A complete 3-D
image I(x,y,z) is built up one (x,y) plane at a time by recur-
sively solving the above equations for each depth step in the
output image space.

Parallel I/O and computation. SBS uses the concept of
“parallel distributed arrays” to support both parallel I/O and
computation. The seismic data are treated as a large regularly
sampled array, with the last dimension (Fortran array index-
ing) spread across processors in the parallel machine. We il-
lustrate this concept in Figure 6 for the initial step in the 3-D
migration algorithm. The y dimension of the data array
P(t,x,y) is spread across the processors, and each node man-
ages a “slab” of t-x slices. Using the parallel I/O model in
Figure 2, the data are read in parallel, and then Fourier trans-
formed in parallel to yield P(f,x,y). For the downward con-
tinuation process, each frequency can be processed
independently, so the parallel distributed dimension must be
changed from y to f, yielding P(x,y,f). This is accomplished
by transposing the data array across processors using the tiled
transpose shown in Figure 5.

After the initial transform and transpose, the data are
downward continued for each depth step. Since the image re-
quires a sum of all frequencies. Data must again be moved be-
tween processors. A master-slave approach could be used,
with one node collecting data from all the others, but this
would create an I/O bottleneck, as in the fan-in/fan-out ex-
ample in Figure 2. This bottleneck can be removed by using
a parallel transpose operation, as shown in Figure 7.
Each processor first performs a local summation
P(x,y,f,n)->I(x,y,n) where n is the number of processors.
The image array is then transposed across processors to yield
I(x,n,y) with y as the parallel distributed dimension. A local
sum completes the frequency summation, giving I(x,y), with
y remaining the parallel distributed dimension. The data can
now be written to disk in parallel, with each processor writ-
ing a strip of the image plane to disk.

Data flow for the complete algorithm is shown in Figure
8. The data are Fourier transformed, transposed, and written
to disk. The imaging loop starts with the data P(x,y,f) on disk,
which is read in parallel to load the data into memory. If there
is not enough memory for the entire data volume, a partial
image can be computed from a subset of the data, and then the
partial images can be summed to form the final complete
image.

In the downward continuation loop, the propagation ve-
locity for the current depth step v(x,y,z = zl) is read from
disk. Each processor requires a copy of the velocity slice.
This can also create a bottleneck, so care should be taken to

provide an efficient means for either interpolating a coarse
representation or broadcasting a copy to all nodes. For long
production runs, checkpoint volumes can be written at regu-
lar intervals to disk, allowing a restart capability. Note that all
operations proceed in parallel. The speed of the application is
determined by the relative mix of computer, internode com-
munication, and disk I/O speeds of the hardware, rather than
by serial bottlenecks in the algorithm.

The algorithm has been tested on both shared memory
symmetric multiprocessors with 10s of processors, and on
distributed memory parallel platforms with 100s of proces-
sors. Scaling tests show that intercode communication and
disk I/O rates become increasingly important as the number
of nodes increases. For the types of systems available today,
acceptable speedups have been observed for up to 512
processors. As interconnect and external I/O rates increase,
the number of processors that can be effectively used for this
application also increases.

Conclusions. Scalable programs for seismic data process-
ing require careful design of the underlying algorithm, soft-
ware support for parallel operations, and balanced hardware
resources for both computation and I/O. The underlying
principle for parallel algorithm design should be “everything
in parallel”, eliminating master-slave and fan-in/fan-out ap-
proaches whenever possible. The ARCO Seismic Bench-
mark Suite provides an environment for testing and
demonstrating these concepts. Fortunately, for seismic pro-
cessing, the large amount of data involved offers many op-
portunities for parallelism, making scalable seismic
processing an achievable goal. E

1366 THE LEADING EDGE DECEMBER 1996

